Shading

- Compute interaction of light with surfaces
- Requires simulation of physics
- “Global illumination”
 - Multiple bounces of light
 - Computationally expensive, minutes per image
 - Movies, architectural design, etc.

Global illumination

- Rendering algorithms, Winter 2010!

Interactive applications

- No physics based simulation
- Simplified models
- Reproduce perceptually most important effects
- Local illumination
 - Only one bounce of light between light source and viewer

One bounce of light

Rendering pipeline

- Different options for shading in rendering pipeline
- Determine colors of vertices
 - Per vertex shading
- Shading while drawing triangles
 - Per pixel shading
Today

Shading
• Introduction
• Local shading models
• Light sources
• Shading strategies

Local illumination
• What is giving a material its color?
• How is light reflected by a
 - Mirror
 - White sheet of paper
 - Blue sheet of paper
 - Glossy metal

Radiometry
• Physical units to measure light energy
• Based on the ray optics model
• Light modeled as rays
 - Ray is idealized narrow beam of light
• No wave effects, like interference or diffraction

Radiance
• “Energy carried along a narrow beam of light”
• Limit of energy passing through a small area in a small bundle of directions, divided by area and solid angle spanned by bundle of directions
 - “Ray density”
• Spectral radiance: Energy at each wavelength
• Units
 \[W \cdot sr^{-1} \cdot m^{-2} \]

Irradiance
• Energy per area: “energy going through a small area, divided by size of area“
• “Radiance summed up over all directions“
• Units
 \[W \cdot m^{-2} \]

Local illumination
• Goal: model reflection of light at surfaces
• Bidirectional reflectance distribution function (BRDF)
 - Given light direction, viewing direction, obtain fraction of light reflected towards the viewer
 - For any pair of light/viewing directions!
 - For different wavelengths (or R, G, B) separately
• BRDF completely describes appearance of material
 “For each pair of light/view direction, BRDF gives fraction of reflected light”
BRDFs

- Given incident and outgoing directions
- BRDF is fraction of incident irradiance arriving from small beam of directions over radiance reflected in outgoing direction
- Units \(\frac{W \cdot m^{-2}}{W \cdot sr^{-1} \cdot m^{-2}} \) = \(\frac{1}{sr} \)

BRDFs

- How to define and store BRDFs that represent physical materials?
 - Physical measurements
 - Gonioreflectometer: robot with light source and camera
 - Measures reflection for each light/camera direction
 - Store measurements in table
 - Too much data, too slow for interactive applications

BRDFs

- Analytical models
 - Try to describe physical properties of materials using mathematical expressions
 - Many models proposed in graphics
 - [Bidirectional reflectance distribution function](http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function)
 - Most of them too complicated for interactive rendering

Simplified model

- BRDF is sum of diffuse, specular, and ambient components
- Each is simple analytical function
- Covers a large class of real surfaces
- Model is not physically accurate!

Diffuse reflection

- Ideal diffuse material reflects light equally in all directions
 - View-independent
 - Surface looks the same independent of viewing direction
 - Matte, not shiny materials
 - Paper
 - Unfinished wood
 - Unpolished stone

Diffuse sphere

- Ideal diffuse material reflects light equally in all directions
 - View-independent
 - Surface looks the same independent of viewing direction
 - Matte, not shiny materials
 - Paper
 - Unfinished wood
 - Unpolished stone
Diffuse materials

Beam of parallel rays shining on a surface
- Area covered by beam varies with the angle between the beam and the normal
- The larger the area, the less incident light per area
- Incident light per unit area is proportional to the cosine of the angle between the normal and the light rays
- Object darkens as normal turns away from light
- Diffuse surfaces are also called Lambertian surfaces

Lambert’s cosine law

- Lambert’s cosine law
 - Area covered by beam varies with the angle between the beam and the normal
 - The larger the area, the less incident light per area
 - Incident light per unit area is proportional to the cosine of the angle between the normal and the light rays
 - Object darkens as normal turns away from light
 - Diffuse surfaces are also called Lambertian surfaces

Diffuse reflection

- Given
 - Unit surface normal \mathbf{n}
 - Unit light direction \mathbf{L}
 - Material diffuse reflectance (material color) k_d
 - Light color (intensity) c_l
- Diffuse color
 \[c_d = c_l k_d (\mathbf{n} \cdot \mathbf{L}) \]
 - Cosine between normal and light

Notes

- Parameters k_d, c_l are r,g,b vectors
- Compute r,g,b values of diffuse color c_d separately
- Parameters in this model have no precise physical meaning
 - c_l: strength, color of light source
 - k_d: fraction of reflected light, material color

OpenGL/jogl

- Lights (glLight*)
 - Values for light: $0,0,0 \leq c_l \leq 1,1,1$
 - $(0,0,0)$ is black, $(1,1,1)$ is white
- OpenGL
 - Values for diffuse reflection: $0,0,0 \leq k_d \leq 1,1,1$
 - Fraction of reflected light
- Consult OpenGL book
 - Online: http://fly.cc.fer.hr/~unreal/theredbook/
Simplified model
- BRDF is sum of diffuse, specular, and ambient components
- Each is simple analytical function
- Covers a large class of real surfaces
- Model is not physically accurate!

Specular reflection
- Shiny surfaces
 - Polished metal
 - Glossy car finish
 - Plastics
- Specular highlight
 - Blurred reflection of the light source
 - Position of highlight depends on viewing direction

Glossy materials
- Ideal specular reflection is mirror reflection
 - Perfectly smooth surface
 - Incoming light ray is bounced in single direction
 - Angle of incidence equals angle of reflection

Law of reflection
- Angle of incidence equals angle of reflection
 \[R + L = 2 \cos \theta \hat{n} = 2(|L| \hat{n})\hat{n} \]
 \[R = 2(|L| \hat{n})\hat{n} - L \]

Glossy materials
- Many materials not quite perfect mirrors
- Glossy materials have blurry reflection of light source

Glossy teapot with highlights from many light sources
Physical model

- Assume surface composed of small mirrors with random orientation (microfacets)
- Smooth surfaces
 - Microfacet normals close to surface normal
 - Sharp highlights
- Rough surfaces
 - Microfacet normals vary strongly
 - Leads to blurry highlight

<table>
<thead>
<tr>
<th>Polished</th>
<th>Smooth</th>
<th>Rough</th>
<th>Very rough</th>
</tr>
</thead>
</table>

Phong model

- Simple “implementation” of the physical model
- Specular reflectance coefficient k_s
- Phong exponent p
 - Higher p, smaller (sharper) highlight

$$c = k_s L_0 \cdot e^p$$

Blinn model (Jim Blinn, 1977)

- Alternative to Phong model
- Define unit halfway vector $h = \frac{L + e}{||L + e||}$
- Halfway vector represents normal of microfacet that would lead to mirror reflection to the eye

Blinn model

- The larger the angle between microfacet orientation and normal, the less likely
- Use cosine of angle between them
- Shininess parameter s
- Very similar to Phong

$$c = k_s L_0 \cdot h^s$$
Simplified model
- BRDF is sum of diffuse, specular, and ambient components
- Each is simple analytical function
- Covers a large class of real surfaces
- Model is not physically accurate!

Ambient light
- In real world, light is bounced all around scene
- Could use global illumination techniques to simulate
- Simple approximation
 - Add constant ambient light at each point $k_d c_a$
 - Ambient light c_a
 - Ambient reflection coefficient k_d
- Areas with no direct illumination are not completely dark

Complete model
- Blinn model with several light sources i
 \[c = \sum_i c_i (k_d (L_i \cdot n) + k_s (h_i \cdot n)^n) + k_a c_a \]

Notes
- All colors, reflection coefficients have separate values for R,G,B
- Usually, ambient = diffuse coefficient
- For metals, specular = diffuse coefficient
 - Highlight is color of material
- For plastics, specular coefficient = (x,x,x)
 - Highlight is color of light

Today
Shading
- Introduction
- Local shading models
- Light sources
- Shading strategies

Light sources
- Light sources can have complex properties
 - Geometric area over which light is produced
 - Anisotropy in direction
 - Variation in color
 - Reflective surfaces act as light sources
- Interactive rendering is based on simple, standard light sources
Light sources

- At each point on surfaces need to know
 - Direction of incoming light (the L vector)
 - Strength of incoming light (the c_i values)
- Standard light sources in OpenGL
 - Directional: from a specific direction
 - Point light source: from a specific point
 - Spotlight: from a specific point with intensity that depends on the direction

Directional light

- Light from a distant source
 - Light rays are parallel
 - Direction and strength constant everywhere in 3D scene
 - As if the source were infinitely far away
 - Good approximation to sunlight
- Specified by a unit length direction vector, and a color

Point lights

- Simple model for light bulbs
- Point that radiates light in all directions equally
 - Light vector varies across the surface
 - Intensity drops off proportionally to the inverse square of the distance from the light
 - Intuition for inverse square falloff?

Point lights

- Incident light direction
 \[\mathbf{L} = \frac{\mathbf{p} - \mathbf{v}}{||\mathbf{p} - \mathbf{v}||} \]
- Strength
 \[c_I = \frac{c_{src}}{||\mathbf{p} - \mathbf{v}||^2} \]

Attenuation

- Sometimes, it is desirable to modify the inverse square falloff behavior of point lights
 - Common (OpenGL) model for distance attenuation
 \[c_I = \frac{c_{src}}{k_c + k_p ||\mathbf{p} - \mathbf{v}|| + k_l ||\mathbf{p} - \mathbf{v}||^2} \]
 - Not physically accurate

Spotlights

- Like point source, but intensity depends on direction
- Specified by a unit length direction vector, and a color

Parameters
- Position, the location of the source
- Spot direction, the center axis of the light
- Falloff parameters
 - how broad the beam is (cone angle)
 - how light tapers off at edges of the beam (cosine exponent)
Spotlights

\[\mathbf{L} = \frac{\mathbf{p} - \mathbf{v}}{\|\mathbf{p} - \mathbf{v}\|} \]
\[q_i = \begin{cases} 0 & \text{if } -\mathbf{L} \cdot \mathbf{d} \leq \cos(\theta_{\text{max}}) \\ \ell_{\text{arc}} (-\mathbf{L} \cdot \mathbf{d})' & \text{otherwise} \end{cases} \]

Photograph of spotlight

Spotlights in OpenGL

Today

Shading
- Introduction
- Local shading models
- Light sources
- Shading strategies

Per-triangle, -vertex, -pixel shading
- May compute shading operations
 - Once per triangle
 - Once per vertex
 - Once per pixel

Per-triangle shading
- Known as flat shading
- Evaluate shading once per triangle using per-triangle normal
- Advantages
 - Fast
- Disadvantages
 - Faceted appearance

Per-vertex shading
- Known as Gouraud shading (Henri Gouraud 1971)
- Per-vertex normals
- Interpolate vertex colors across triangles
- OpenGL default
- Advantages
 - Fast
 - Smoother than flat shading
- Disadvantages
 - Problems with small highlights
Per-pixel shading

- Also known as Phong interpolation (not to be confused with Phong illumination model)
 - Rasterizer interpolates normals across triangles
 - Illumination model evaluated at each pixel
 - Implemented using programmable shaders (next week)
- Advantages
 - Higher quality than Gouraud shading
- Disadvantages
 - Much slower

Gouraud vs. per-pixel shading

- Gouraud has problems with highlights
- Could use more triangles...

What about shadows?

- Standard shading assumes light sources are always visible
 - Does not determine if light is blocked
 - Does not produce shadows
- Shadows require additional work
- Later in the course

What about textures?

- How to combine „colors“ stored in textures and lighting computations?
 - Interpret textures as shading coefficients
 - Usually, texture used as ambient and diffuse reflectance coefficient \(k_d, k_a \)
- Textures provide spatially varying BRDFs
 - Each point on surface has different BRDF parameters, different appearance

Summary

- Local illumination (single bounce) is computed using BRDF
- BRDF captures appearance of a material
 - Amount of reflected light for each pair of light/viewing directions
- Simplified model for BRDF consists of diffuse + Phong/Blinn + ambient
 - Lambert’s law for diffuse surfaces
 - Microfacet model for specular part
 - Ambient to approximate multiple bounces
- Light source models
 - Directional
 - Point, spot, inverse square fall-off
- Different shading strategies
 - Per triangle, Gouraud, per pixel

Next time

- Programmable shaders